Strictly positive definite functions on the unit circle
نویسندگان
چکیده
منابع مشابه
Strictly positive definite functions on the unit circle
We study strictly positive definite functions on the unit circle in the Euclidean space of dimension two. We develop several conditions pertaining to the determination of such functions. The major result is obtained by considering the set of real numbers as a vector space over the field of rational numbers and then applying the Kronecker approximation theorem and Weyl’s criterion on equidistrib...
متن کاملStrictly Hermitian Positive Definite Functions
Let H be any complex inner product space with inner product < ·, · >. We say that f : | C → | C is Hermitian positive definite on H if the matrix ( f(< z,z >) )n r,s=1 (∗) is Hermitian positive definite for all choice of z, . . . ,z in H, all n. It is strictly Hermitian positive definite if the matrix (∗) is also non-singular for any choice of distinct z, . . . ,z in H. In this article we prove...
متن کاملStrictly Positive Definite Functions on Spheres
In this paper we study strictly positive definite functions on the unit sphere of the m-dimensional Euclidean space. Such functions can be used for solving a scattered data interpolation problem on spheres. Since positive definite functions on the sphere were already characterized by Schoenberg some fifty years ago, the issue here is to determine what kind of positive definite functions are act...
متن کاملStrictly positive definite reflection invariant functions
Strictly positive definite functions are used as basis functions for approximation methods in various contexts. Using a group theoretic interpretation of Bochner’s Theorem we give a sufficient condition for strictly positive definite functions on a semi-direct product which are invariant under the natural action of a given subgroup. As an application strictly positive definite, reflection invar...
متن کاملStrictly positive definite functions on the complex Hilbert sphere
We write S∞ to denote the unit sphere of `, the set of all z in ` for which 〈z, z〉 = 1 (this set is often called the complex Hilbert sphere). A continuous complex-valued function f defined on the closed unit disc D := {ζ ∈ C : |ζ| ≤ 1} is said to be positive definite of order n on S∞ if, for any set of n distinct points z1, . . . , zn on S∞, the n×n matrix A with ij-entry given by f(〈zi, zj〉) i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2004
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-04-01668-0